skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Yiduo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The formation of magma‐poor continental rifts is an enigmatic process, as the weakening mechanism(s) for cratonic lithosphere remains uncertain in the absence of elevated lithospheric temperature. One view links weakening to melts hidden at depth, while another ascribes it to pre‐existing weaknesses. Long‐term extensional rates also influence lithospheric strength and rift evolution. We target the Linfen Basin (LB) in the magma‐poor Shanxi Rift System (SRS) in the North China Craton to understand these components. We apply cosmogenic26Al/10Be burial dating on 14 core samples at different depths from three deep boreholes in the basin and obtain six valid burial ages ranging from 2.37+1.18/−1.21to 5.86+inf/−1.37 Ma. We further re‐interpret a seismic reflection profile and quantify the geometry and amount of extension by forward structural modeling with multiple constraints based on extensional fault‐bend folding theory. The timing of the basal sedimentation is estimated to be ∼6.1 and ∼4.2 Ma in the southern and northern portions, respectively, indicating diachronous, northward‐propagating rifting. The amount and mean rate of extension are ∼3.6 km and ∼0.9 km/Myr, respectively. The basin depths increasing northward indicates the clockwise rotation of the basin. We propose a basin‐scale non‐rigid transtensional bookshelf faulting model to explain the rotation patterns of the circum‐Ordos basins. We argue that the inherited structures weaken the cratonic lithosphere of the SRS, and the low extension rate contributes to its magma‐poor nature. We propose a lithospheric‐scale evolution model for the LB, invoking the inherited crustal weakness, low extension rate, and lower lithosphere counterflow. 
    more » « less
  2. Fold-and-thrust belts are structural features that accommodate upper-crustal shortening by the growth of a series of thrust faults and folds. Recent studies show that a better understanding of the structure and sedimentation styles of fold-and-thrust belts and their associated basins can provide crucial insights for improved interpretations of the evolution of ancient and modern convergent margins and the mechanisms of intracontinental deformation. To achieve a more comprehensive understanding of the development of contractional orogenic belts, this thematic collection gathers contributions that explore different types of fold-and-thrust belts at various scales around the world, via different approaches including theory development, structural and stratigraphic observations from the field, geophysical analyses, and numerical modelling. Case studies include the northern margin of the Tibetan plateau and Pamir region, the Timanian and Caledonian orogenies in northern Norway, orogenic belts in western Laurentia, and the Andes of western South America. These studies reemphasize the importance of integrating broad datasets when documenting the distribution, geometry, and kinematics of structures in fold-and-thrust belts and their associated basins, including field-based structural observations, provenance, low-temperature thermochronologic, geomorphologic, and subsurface data, and analog and numerical models. This thematic collection aims to encourage further efforts for comparative studies of the fold-and-thrust belts around the world and proposes interdisciplinary research to address outstanding questions in the study of contractional orogens. Thematic collection: This article is part of the Fold-and-thrust belts collection available at: https://www.lyellcollection.org/topic/collections/fold-and-thrust-belts-and-associated-basins 
    more » « less
  3. Abstract The early Cenozoic topography of the northern Tibetan plateau remains enigmatic because of the paucity of independent paleoelevation constraints. Long‐held views of northward propagating deformation imply a low Paleogene elevation, but this prediction is speculative. We apply flexural modeling to reconstructed Paleogene isopach data obtained from the Qaidam basin, which requires a larger topographic load in the Qilian Shan and a smaller load in the Eastern Kunlun Shan. Incorporating knowledge of proto‐Paratethys marine incursions in the Paleogene Qaidam basin, we infer a topographically low (0.4–1.0 km) Eastern Kunlun Shan and a higher (0.4–1.5 km) Qilian Shan during the Paleogene. This implied paleo‐relief contrasts with previous predictions and suggests more recently, Neogene surface uplift in the Eastern Kunlun Shan has been more significant than in Qilian Shan, highlighting diachronous growth of the northern Tibetan plateau. The low‐moderate paleoelevation implies a warmer and more humid climate in Northern Tibet during the Paleogene. 
    more » « less